Strona:PL Samuel Dickstein - Pojęcia i metody matematyki.djvu/066

Z Wikiźródeł, wolnej biblioteki
Ta strona została przepisana.
Dwie oznaczone mnogości M i M1 nazywają się równoważnemi, co wyrażamy przez M ~ M1 jeżeli można je przyporządkować wzajemnie tak, aby każdemu elementowi pierwszéj odpowiadał jeden oznaczony element drugiéj, i odwrotnie.

Jeżeli M ~ M1 i M1 ~ M2, to wynika stąd, że M ~ M2.
Przykłady. Mnogość barw tęczowych [czerwona, pomarańczowa, żółta, zielona, błękitna, niebieska, fioletowa] i mnogość tonów gamy [C, D, E, F, G, A, H] są mnogościami równoważnemi: obie podchodzą pod pojęcie ogólne siedm.
Mnogość palców obu rąk i mnogość punktów w tak nazwanym trójkącie arytmetycznym

  ·   
  ·    ·   
  ·    ·    ·   
·    ·    ·    · 

są równoważne. Liczbą kardynalną, im odpowiadającą, jest dziesięć.
Mnogość nieskończona (ν) wszystkich liczb całkowitych szeregu 1. [str. 55.] jest równoważna: mnogości wszystkich liczb parzystych, mnogości wszystkich liczb nieparzystych. mnogości (μ + νi) wszystkich liczb zespolonych całkowitych μ + νi, gdzie μ i ν przyjmują niezależnie od siebie wszystkie wartości całkowite. Wszystkie te mnogości są znów równoważne mnogości (μ/ν) wszystkich liczb rzeczywistych μ/ν, gdzie μ i ν są. liczbami względnie pierwszemi, nawet mnogość wszystkich liczb algebraicznych jest równoważna każdéj z powyższych mnogości. [Porówn. art. 14.]. Oznacza to, że wszystkie nieskończone mnogości, o których tu mowa, można przystosować do szeregu 1. w sposób, wyżéj podany.
Przeciwnie, mnogości wszystkich liczb rzeczywistych [t. j. liczb wymiernych, niewymiernych, algebraicznych i przestępnych], jak tego dowiódł Cantor, Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen [Journal für die reine und angewandte Mathematik, LXXVII, 1874, str. 258], nie jest równoważną mnogości (ν).
[Możemy też wspomnieć tu o ważném twierdzeniu Cantora, że rozmaitość n-wymiarowa ciągła, uważana jako rozmaitość punktów jest równoważna continuum linearnemu. [Ein Beitrag zur Mannigfaltigkeitslehre Journ. f. die reine u. ang. Mathem. LXXXIV. 1878, str. 242.].
Z poprzedzającego wynika, że mnogości równoważne mają moc albo liczbę kardynalną równą i że naodwrót mnogości o równej liczbie kardynalnéj są równe. Jeżeli więc M ~ M1, to M ~ M1 i odwrotnie. Tu przez M i M1 oznaczamy liczby kardynalne.

Jeżeli dwie dane mnogości nie są równoważne, to musi zachodzić jeden z dwóch następujących przypadków: 1-o można z N wydzielić część składową N′, aby było M ~ N′; 2-o można z M wydzielić część składową M