Strona:Dwa odczyty Marji Skłodowskiej-Curie.djvu/12

Z Wikiźródeł, wolnej biblioteki
Ta strona została uwierzytelniona.

zwane poziomy energji, analogiczne do poziomów energji dla elektronów zewnętrznych, które są właśnie hνK, hνL, etc. Teorja ta jest w pełnym rozwoju, ale wiele punktów jest jeszcze ciemnych; tak np. stosunek do widma promieni β, których wydawanie jest związane z przemianą radjoaktywną atomu — nie jest jeszcze dobrze znany; części ciągłe widma także nie są wyjaśnione. Według niektórych autorów mogłyby one pochodzić z dyfuzji promieni γ przez elektrony według hypotezy Comptona. Prace, które są w toku w mojem laboratorjum wykazały, że widma magnetyczne zawierają linje i grupy linji, odpowiadające ogromnym szybkościom i bardzo wysokim potencjałom (około 10 miljonów voltów). Określenie roli tych promieni β o wielkiej energji jest, mam nadzieję, kwestją bliskiej przyszłości. Są może między nimi i promienie β pierwotne; przypomnijmy bowiem, że potencjał równoważny energji promieni α jest kilka miljonów voltów, a można przypuszczać, że energja odpowiadająca rozkładowi atomów radjoaktywnych jest tego samego porządku dla obu kategoryj rozkładu.
Nowe pomiary absorbcji promieni β radu E w mojem laboratorjum okazały, że współczynnik absorbcji jest funkcją linearną numeru atomowego. Pomiary współczynnika absorbcji dla promieni Roentgena jednolitych o znanym potencjale byłyby bardzo pożądane w dziedzinie jaknajwyższych napięć, gdyż pomogłyby do identyfikacji promieni γ, których nie jesteśmy w możności otrzymać dowolnie w oddzielnych grupach. Obserwacje wykonane za pomocą metody Wilsona okazują jasno, zgodnie z dawnemi przypuszczeniami, że promienie β produkują o wiele mniej jonów niż promienie α, i że droga ich w powietrzu zbacza nieustannie od kierunku prostolinijnego; zapewne tylko bardzo szybkie promienie β mogą na pewnej części drogi kierunek pierwotny zachować. Co do promieni γ, to jest rzeczą niemal pewną, że dają się one poznać tylko za pośrednictwem wtórnych promieni β, które wywołują w napotkanej materji, same zaś przez się jonów nie tworzą. Niektóre z tych wtórnych elektronów noszą nazwę fotoelektrycznych, a mechanizm ich wydawania stosuje się do prawa Einsteina, powyżej wzmiankowanego; inne są o względnie małej szybkości i tłómaczone są przez mechanizm dyfuzji opisany przez Comptona, to jest, że quantum pierwotne, odbite niejako przez elektron, ulega zmniejszeniu, a część jego energji przechodzi na elektron, który niejako odskakuje pod uderzeniem. Stosunek fotoelektronów do elektronów odskoku nie jest jeszcze wyjaśniony.
Przejdźmy obecnie do 3-ej grupy badań, które zajmuje się promieniami atomowemi o ładunku dodatnim, wytwarzanymi w materji poddanej bombardowaniu przez promienie α. Promienie takie powstają łatwo w wodorze. Jeżeli cząsteczka α przebiega bardzo blisko jądra atomu wodoru, następuje tak zwane uderzenie wyjątkowe: cząsteczka jest odchylona ze swej drogi o pewien kąt, a napotkane jądro, oddzielając się od towarzyszącego mu elektronu, jest wprawione w ruch z dodatnim ładunkiem i tworzy promień, mogący przebyć w gazie pewną drogę – przy utworzeniu pewnej ilości jonów. Metoda scyntylacyjna pozwala obserwować te promienie wodoru, których przebieg może być dłuższy niż przebieg promieni α, które je wytworzyły. Metoda Wilsona zaś daje nam w tym wypadku obraz rozwidlenia, którego dwa ramiona stanowią drogi obu cząsteczek po uderzeniu i biorą początek tam, gdzie się kończy prostolinijna droga pierwotnego promienia. Promienie atomowe można otrzymać również w innych gazach, np. w helu, w tlenie, w azocie, w argonie. Gdy atom uderzony ma większą