Strona:H. Poincaré-Nauka i Metoda.djvu/133

Z Wikiźródeł, wolnej biblioteki
Przejdź do nawigacji Przejdź do wyszukiwania
Ta strona została uwierzytelniona.


czenie. To też jego pewniki nie są dla niego tym, czym są dla zwykłego człowieka.
Uważa je on jako definicję przez postulaty symbolu =, dotychczas pozbawionego wszelkiego znaczenia. Lecz aby uprawnić tę definicję, trzeba okazać, że owe dwa pewniki nie prowadzą do żadnej sprzeczności.
W tym celu Hilbert posługuje się rozumowaniem z § III, nie zdając sobie, jak się zdaje, sprawy z tego, że stosuje indukcję zupełną.

IX.

Koniec rozprawy Hilberta jest całkiem enigmatyczny — nie będziemy się też nad nim obszerniej zastanawiali. Roi się tu od sprzeczności; czuje się, że autor posiada niejasną świadomość petitio principii, jakie popełnił, i że usiłuje on napróżno zagipsować pęknięcia swego rozumowania.
Cóż to mówi? W chwili, kiedy ma dowieść, że definicja liczby całkowitej zapomocą pewnika indukcji zupełnej nie zawiera w sobie sprzeczności, Hilbert wymyka się, jak wymknęli się Russell i Couturat, bo trudności tej niemoże podołać.

X.
Gieometrja.

Gieometrja, mówi Couturat, jest obszerną zamkniętą w sobie nauką, w której nie napotyka się wcale zasady indukcji zupełnej. Jestto słuszne w pewnej tylko mierze, nie można powiedzieć, że się jej nie napotyka wcale, lecz, że się ją napotyka mało. Jeżeli odniesiemy się do Rational Geometry Halsteda (New-York, John Wiley and Sons, 1904), ułożonej według zasad Hilberta, napotkamy zasadę indukcji zupełnej po raz pierwszy na str. 114 (o ile nie szukałem źle, co jest bardzo możliwe).
Tak więc gieometrja, która przed paru zaledwie laty