Strona:H. Poincaré-Nauka i Metoda.djvu/131

Z Wikiźródeł, wolnej biblioteki
Przejdź do nawigacji Przejdź do wyszukiwania
Ta strona została uwierzytelniona.


czasem wolę śledzić krok za krokiem rozwój myśli Hilberta, przytaczając dosłownie najważniejsze ustępy.
»Rozważmy przedewszystkiem przedmiot 1«. Stwierdźmy, że postępując w ten sposób, nie przypuszczamy zgoła pojęcie liczby, gdyż 1 jest dla nas poprostu symbolem, którego znaczenie nic nas nie obchodzi. »Grupy utworzone zapomocą tego przedmiotu przez powtórzenie go dwa, trzy, kilka razy...« Otóż tym razem jest już inaczej: skoro wprowadzamy wyrazy dwa, trzy i zwłaszcza kilka, wprowadzamy pojęcie liczby; i definicja liczby całkowitej skończonej, którą znajdziemy za chwilę, będzie nieco spóźniona. Autor był o wiele za przenikliwy, żeby nie dostrzec tego petitio principii. Toteż pod koniec swej pracy usiłuje on naprawić to zapomocą istnego gipsowania.
Hilbert wprowadza następnie dwa proste przedmioty 1 i = i rozpatruje wszystkie kombinacje tych dwu przedmiotów, wszystkie kombinacje ich kombinacji itd. Rozumie się samo przez się, że trzeba zapomnieć zwykłe znaczenie tych dwu znaków i nie przypisywać im żadnego. Dzieli on następnie te kombinacje na dwie klasy, na klasę istot i na klasę nie-istot, i aż do dalszych założeń podział ten jest całkowicie dowolny; wszelkie twierdzenie twierdzące mówi nam, że dana kombinacja należy do klasy istot; wszelkie twierdzenie przeczące mówi, że pewna kombinacja należy do klasy nie-istot.

VII.

Zaznaczmy teraz różnicę najwyższej doniosłości. Dla Russella przedmiot jakikolwiek, który oznacza on przez x, jestto przedmiot zupełnie nieoznaczony, co do którego nie przypuszcza on nic; dla Hilberta jestto jedna z kombinacji, utworzonych z symbolów 1 i =; nie pojmuje on wprowadzania czegokolwiek innego prócz kombinacji przedmiotów już zdefinjowanych. Hilbert formułuje zresztą swą myśl w sposób najwyraźniejszy, i uważam za konieczne przytoczyć in extenso