Strona:H. Poincaré-Nauka i Metoda.djvu/056

Z Wikiźródeł, wolnej biblioteki
Przejdź do nawigacji Przejdź do wyszukiwania
Ta strona została uwierzytelniona.


I tutaj dzieje się to za sprawą złożoności przyczyn, decydujących o ich tworzeniu się. W atmosferze rozeszła się pewna ilość jonów, w ciągu długiego czasu ulegały one ustawicznie zmieniającym się prądom powietrznym, porywały je wiry o bardzo małych rozmiarach, i w ten sposób końcowy ich rozkład jest zupełnie inny niż początkowy. Nagle temperatura obniża się, para zgęszcza się, i każdy z tych jonów staje się środkiem kropli deszczu. Aby wiedzieć, jaki będzie rozkład tych kropli, i ile ich spadnie na każdy kamień, byłaby niewystarczającą znajomość położenia początkowego jonów, trzebaby ponadto wciągnąć w rachubę wpływ tysiąca drobniutkich i kapryśnych prądów powietrznych.
To samo ma miejsce, gdy naprószymy w naczynie z wodą pyłki kurzu; naczynie to przebiegają prądy, których prawa nie znamy, o którym wiemy jedynie, że jest bardzo złożone, i po pewnym czasie rozkład pyłków w naczyniu tym będzie miał cechy przypadkowości, to jest będzie jednostajny; będzie to właśnie następstwem złożoności tych prądów. Gdyby ulegały one jakiemu prostemu prawu, gdyby np. naczynie miało kształt obrotowy, i gdyby prądy krążyły dokoła osi, zakreślając koła, nie mielibyśmy już owego jednostajnego rozkładu, bo każdy pyłek zachowałby swą początkową wysokość i początkową odległość od osi.
Do tego samego wyniku przyprowadziłoby nas rozważenie mieszaniny dwu cieczy lub dwu drobnoziarnistych substancji proszkowatych. Podobnież się rzeczy mają — że weźmiemy przykład grubszy — przy mieszaniu talji kart. Przy każdym przełożeniu karty ulegają permutacji (analogicznej do tych, jakie są przedmiotem teorji podstawień). Jakąż permutację otrzymamy w końcu? Prawdopodobieństwo, by była to pewna określona permutacja (np. ta, która sprowadza na miejsce n kartę, która zajmowała miejsce φ (u) przed permutacją,) prawdopodobieństwo to, mówię, zależy od przyzwyczajeń gracza. Ale jeśli gracz ten miesza karty dosyć długo, ilość kolejnych permutacji będzie bardzo duża, i porządek końcowy, jaki stąd wyniknie, będzie już tylko rzeczą przypadku; to